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A theoretical study is made of the onset of cellular convection in a shallow 
two-dimensional container of fluid when the temperature difference between the 
horizontal boundaries is a monotonic function of horizontal distance. The typical 
lengthscale of the horizontal variation in the temperature difference is taken to be 
of the same order of magnitude as the length of the container, and both are much 
longer than the depth of the container. The resulting flow may be regarded as 
consisting of two parts, a steady base flow and a disturbed flow. It is found that a 
weak disturbance taking the form of transverse rolls is first set up near the endwalls, 
but as the temperature difference between the horizontal boundaries is uniformly 
increased, an instability in the form of longitudinal rolls takes place near the hotter 
end of the container. This description is in good qualitative agreement with 
experiment. 

1. Introduction 
In  an earlier paper (Walton 1982, hereinafter referred to as I) we discussed the 

stability of a layer of fluid heated from below in which the depth of the layer increased 
monotonically with horizontal distance. Weakly nonlinear theory was used to 
determine the solution in a region, referred to as the ‘transition ’ region, where the 
local Rayleigh number is close to the critical value for the onset of Rayleigh- 
BBnard convection in an unbounded layer of uniform depth. (The local Rayleigh 
number Eu(X), is defined in terms of the local fluid depth h ( X ) ,  where X measures 
horizontal distance). It was assumed in I that the transition region occurred 
sufficiently far from the endwalls of the container for their influence to be negligible. 

Experimental observations of a similar configuration (uniform depth but monoto- 
nically increasing vertical temperature difference) reported by Srulijes ( 1979) do not 
include results that  may be compared to the theory presented in I because the 
transition region occurs too close to an endwall. Also, it was not possible in I to 
determine which was the preferred mode of instability because none possessed a 
critical Rayleigh number at which it first appeared. Instead, the amplitude of each 
mode increased smoothly from the shallower, more stable, end to the deeper end. If 
the local Rayleigh number is increased uniformly, say by increasing the vertical 
temperature difference, AT between the boundaries, then the transition region moves 
towards the shallower end. The layer of fluid is most unstable adjacent to the endwall 
where the depth is greatest, which means that if we wish to determine which mode 
appears first as AT increases, we must investigate the solution near this endwall. 

The object of this paper is to determine the effect of endwalls on the onset and 
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development of convection in such a layer of fluid. For simplicity, and in order to 
provide a more exact comparison with experiment, we shall treat a slightly different 
problem to that discussed in I, in which a horizontal layer of fluid is heated 
non-uniformly from below. 

We suppose that the lengthscale of the horizontal variation in base temperature 
is of the same order of magnitude as the length L of the container, and that this is 
much larger than the depth h of the container. Then the aspect ratio 8 = h/L + 1 .  
In this parameter regime the flow may be regarded as consisting of a steady base flow 
and a disturbed flow. It is shown in $2 that the base flow consists of a temperature 
distribution which is linear in the vertical coordinate, and a weak circulation. The 
boundary conditions a t  the endwalls are satisfied by this solution at  leading order, 
but there remains a discrepancy O(e)  which ‘forces’ the disturbed flow. To leading 
order there is no forcing, and the disturbed flow satisfies a problem with ‘perfect’ 
end conditions. The appropriate solution is given in $3. The O(E)  ‘imperfection’ is 
shown, in $4, to be particularly important for subcritical values of the Rayleigh 
number when a weak cellular flow occurs near the endwall at the hotter end of the 
container. Finally, the results are discussed and a comparison with experimental 
results is made in $5 .  

2. Formulation of the problem 
We consider the onset of cellular convection in a two-dimensional container of fluid, 

0 < x* < L,O < z* < h ;  the container is unbounded in the y* direction. The 
temperature T* of the upper surface z* = h is kept constant and equal to T,*, while 
that of the lower surface z* = 0 is taken to be T,* + AT,*F(x*/L), where AT,* > 0 and 
P(x*/L) is prescribed. In this paper we shall confine our attention to temperature 
variations for which F(0)  = 1 and dF*/dx* < 0 for all x*e[O, L]. This means that 
the temperature difference between the horizontal boundaries is greatest at  x* = 0, 
where it is equal to AT,*, and decreases monotonically in [0, L]. For simplicity we 
shall assume that the horizontal boundaries are stress-free, although this is by no 
means essential; it is not expected that the results will be qualitatively different for 
rigid boundaries. The endwalls x* = 0, L are taken to be rigid and, again for 
simplicity, perfect insulators. 

We shall use dimensionless Cartesian coordinates (x, y, z )  = h-l(x*, y*, z* ) ,  a dimen- 
sionless temperature field T = (AT,*)-l T* and dimensionless velocity components 
(u, w, w), time t and pressure p ,  scaled on ~ / h ,  h2 /K,  po/h2 respectively, where K is the 
coefficient of thermal diffusivity and po is a reference density. 

Under the assumption that the Boussinesq approximation may be made, the 
dimensionless equations of continuity and conservation of energy and momentum are 

v .u  = 0, (2.1) 

aT -+ (u. V) T = V2T, 
at (2.2) 

CT-’ ($+ (U . V) u = -V, + Ra T2+ V2u. 1 :  
The Rayleigh number Ra and Prandtl number are defined by 

V 
, C T = -  

VK K ’  

ag(AT,*) h3 Ra = 

(2.3) 

(2.4) 
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where a,  v are the coefficients of cubical expansion and kinematic viscosity 
respectively and g is the acceleration due to gravity. 

In dimensionless terms the boundary conditions are 

au av 
- ( 2  = O , l ) ,  a2 a2 u,=-=--o  

T =  0 ( 2  = I ) ,  T = F(Ex)  (Z = 0), J 

Here E = h / L  is the aspect ratio of the container. We shall assume that E 4 1 and 
that F is a function only of the ‘slow’ horizontal variable X = ex scaled on the length 
L of the container. 

The problem defined by (2.1)-(2.6) is analogous to that considered in I except for 
the presence of the endwalls a t  X = 0 , l .  

The effect of endwalls on the onset of convection in a uniformly heated rectangular 
container has been considered by Hall & Walton (1977) and Daniels (1977). They 
distinguished two classes of boundary conditions at the endwalls: in the first 
(‘perfect ’) case the conditions at  the endwalls are satisfied exactly by the steady base 
solution which holds prior to the onset of Rayleigh-BBnard convection in an 
unbounded layer, while in the second case (the ‘imperfect‘ case) these conditions are 
not satisfied by the base solution. Hall & Walton and Daniels were able to obtain 
solutions for the ‘perfect’ and ‘slightly (or weakly) imperfect’ case by perturbing 
about the base solution. 

The same ideas may be carried over to the present problem. Let us denote by 
subscript B the steady base solution which holds for the unbounded layer. For E < 1 
this solution may be found by expanding in powers of E as in I. We find that 

TB = T , + O ( E ) ,  U B  = EuO+O(E~) V B  0, wg = s ~ w O + O ( E ~ ) ,  
where 

T, = (1 -Z )F(X) ,  I 
dG 

uo = RaF’(X)--, 
dz 

wo = -RaF”(X)G(z), 
(2.7) 

with 
G( 2 )  = &( - 3z5 + 1 5z4 - 20z3 + 8 2 ) .  

To leading order the base state consists of a temperature distribution whose vertical 
gradient F ( X )  decreases as X increases, and a weak shear flow. It is useful later on 
to use a ‘ local ’ Rayleigh number Ra defined in terms of the local vertical temperature 
gradient F ( X )  and related to Ra by 

- 

Ra = F ( X )  Ra. (2.8) 

We shall show below that the amplitude of the perturbed solution is at  least O ( E )  
in the region of main interest, and there is therefore no point in retaining any terms 
greater than the O(s)  terms in the base solution, the higher-order terms being 
absorbed in the perturbation. Let us now write 

T = T,+0, u = ~ + E ( U ~ , O , O ) ,  (2.9) 

where (0, u )  are the perturbed variables with 10 I -4 I T, I, I u I 4 1 .  
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The boundary conditions on the perturbed quantities are 

( 2 . 1 0 ~ )  

u = -€?Lo, 2) = w = 0 (X = 0, l) ,  (2.10b) 

(2.104 

= -E(l-Z)F’(i) (X = 1 ) .  (2.10d) 

The horizontal variation of the base state is then manifest as a weak forcing at 
the endwalls, and the boundary conditions (2.10) may be described as ‘slightly 
imperfect’ in the terminology of Daniels and Hall & Walton. To leading order in E 

it is possible to neglect the forcing altogether and consider the ‘perfect’ boundary 
conditions in which ( 2 . 1 0 M )  are replaced by 

- = u = 2, = w = 0 

_ -  - --E(l-z)F’(O) ( X  = O), 
ae 
ax 

ae 
ax (X= 0 , l ) .  (2.11) 

We remind the reader that in both cases the horizontal variation of the base state 
also enters the perturbation problem through nonlinear terms in the governing 
equations. 

We shall return to the imperfect problem in $4, but in $3  we discuss the perfect 
problem. 

3. The ‘perfect’ problem 
The equations satisfied by the perturbed variables are given in I, but of course we 

must now take into account the boundary conditions a t  X = 0 , l .  Solutions were 
obtained in I in the region where the local Rayleigh number is either below critical 
or is, in some sense, close to it. In the present problem the local Rayleigh number 
Ra is greatest at  X = 0 where it is equal to Ra, so we shall impose the restriction 
that Ra is either below critical or, if it exceeds critical, it remains close to it. The 
critical value referred to here may be taken to be the critical value for the onset of 
convection in a uniformly heated unbounded layer. For isothermal stress-free 
horizontal boundaries this value, denoted by Ra?, is equal to Tn4. 

_. 

Let us write 
Ra = RaF(l+  Ra,). (3.1) 

Then either Ra, < 0 or, if Ra, > 0 we must assume that Ra, < 1.  Particular scalings 
for Ra, in terms of -E will be chosen later. 

Under these conditions we look for solutions of the perturbed problem in the form 

where E = exp{ik,x+ik,y} with k i +  k i  = kt  = in2. This solution represents a slow 
variation with amplitude d A ( X , )  about the critical solution for the unbounded 
uniformly heated layer. The amplitude function A ( X , ) ,  the small parameter d, and 
the slow variable X, depend upon E and k,, the x-component of the wavenumber, 
as described in I. There it is shown that if k, x 1, then A = 8, X, = e-fX = E ~ X ,  and 
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A satisfies d2A 
dX; - O’ 

(F’(0) X, + Ru, d) A - A I A l 2  + 401, - - (3.3) 

an equation known as the second Painlev6 transcendent. For stress-free isothermal 
boundary conditions a t  z = 0,1, the constants a,, a2 are given by 

a, = (37q-1, a2 = @-“; (3.4) 

When k, is small a different scaling must be used because u,+O as k,+O. It is shown 
in I that for k, = &, with k, x 1 we need to take A = d, X, = d X  = E ~ Z ,  in which 
case A satisfies 

(F’(0) X, + Rule-%) A -a, A I A l 2  - a2 2ik,- +- A = 0. (3.5) ( - dX, dX; d2)2 
In  order to simplify the discussion we shall now confine our attention to the two 

extreme roll configurations: transverse rolls (rolls aligned with their axes in the 
y-direction) for which k, = k, = .\/in, k, = 0, and longitudinal rolls (rolls aligned with 
their axes in the x-direction) for which k, = k, = .\/$, k, = 0. For transverse rolls 
A = $,X1 = dz, and A satisfies (3.3) with a2 = 2/37c2 and for longitudinal rolls 
A = 8, X, = dx, and A satisfies 

d4A 
dXf 

(a’(0) x, + Ru, E-6)  A - a, A1 A 12- 012- = 0 (3.6) 
with a2 = in4. 

Using either scaling for X,, the boundary at X = 0 becomes X, = 0, while the 
boundary X = 1 becomes X, = CO. The amplitude of the cellular disturbance is 
modulated on a lengthscale long compared with the depth of the fluid layer and the 
wavelength of the disturbance but short compared with the length of the container. 
The boundary conditions (2.11) become 

A = O  (X,=O), A+O (X,+OO) (3.7) 
for the transverse mode, and 

for the longitudinal mode. 
The amplitude equations (3.3), (3.6) together with their boundary conditions (3.7), 

(3.8) must be solved numerically, but first we eliminate the coefficients in (3.3), (3.6) 
by reducing the equations to canonical form. 

In  (3.3) we write 

&?al = €41 -2a,~a’(o)$RU,, 

whereupon AT satisfies 

with 

(3.10) 

(3.11) 

We remind the reader that F’(0) < 0. We shall assume that Ru, - 1 or, equivalently, 
Ru, - €5. 
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Numerical solutions of the problem posed by (3.10), (3.11) have been obtained in 
two ways. First, following Miles (1978) we may write 

AT aAi(XT) ( X T j  a), 

where Ai(X,) is an Airy function and a is a constant, and integrate (3.10) inwards 
from a suitably large value of x,. The constant RUT is chosen so that, for a prescribed 
value of a,, A,  vanishes at X, = 0. Miles (1978) and Rosales (1978) report that it 
is very difficult to obtain accurate solutions for even moderately large values of Ra, 
and; indeed, Miles presents results only for Ra, 5 7. 

An alternative method, which presents none of these difficulties, involves expansions 
in Chebychev polynomials and is described in detail in I. The results obtained by these 
two methods are in good agreement for small values of RUT and are summarized in 
figures 1 and 2. There are several noteworthy features of the results. First, the 
minimum value of RUT for which solutions exist is 

RUT = RUT9 c = 2.338 

and the critical value of Ra for the onset of transverse rolls is therefore 

27x4 
4 

Ra, = - ( 1 + 2.338(2ai P ' ( O ) ) %  & + . . .). 
The critical value of the Rayleigh number for the onset of the transverse mode 
therefore exceeds that for unmodulated, unbounded BBnard convection by a term 
O(&). This contrasts with an increment O(e2) found by Hall & Walton for the onset 
of Benard convection in a rectangular box with 'perfect' end conditions. Critical 
values of Rayleigh numbers are usually determined on the basis of linearized theory 
in which the amplitude of the disturbance is assumed to be infinitesimally small. The 
present case is no exception, because the critical value occurs in the limit I A 1 + O  when 
A ,  K Ai(X,) for all x, 

Secondly, the location of the maximum value of the amplitude, denoted by X,,, 
appears to approach the wall X, = 0 as RUT+ CO, and in fact Miles (1980) has 
demonstrated that XT, - Ra$ln R, as RT+ 00. Thirdly, the maximum value of 
the amplitude A,, rapidly approaches the Value [$(RUT - XTM)]' as RUT + 00, which 
is the value given by quasistationary weakly nonlinear theory in which X-derivatives 
are ignored). This limiting behaviour means that a boundary-layer structure near 
X, = 0 becomes more pronounced as Ra, + . Miles has shown that the solution in 
the boundary layer takes the form 

0 and -RUT is equal to the first zero of Ai. 

AT = &6'(ATo+6AT1+ en.), 

where 6 = [ ~ ( R ~ T - X X , , ) ] ~  < 1, 
AT0 = tanhi8 

AT1 = -8tanhgO+g[2e-8-((82+38+5-3e-8) sech2&8], 

8 = 6-4XT. 

As Ra, increases beyond O(d) ,  the present theory breaks down because the 
maximum value of the amplitude exceeds that which can be accommodated by 
weakly nonlinear theory. All that  that theory can then describe is the solution in a 
small neighbourhood of the value of X ,  where the local Rayleigh number is equal 
to the critical value for unmodulated unbounded BQnard convection. This analysis 
has already been given in I. 
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1.5- 

1 .o 
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XT 
FIQTJRE 1. A ,  as a function of X, for values of Ra, as follows: (a) 3.091; ( b )  4.727; ( e )  6.585; 
(d )  8.504; ( e )  10.450; (f)  12.410; (9) 14.380; corresponding to Ak(0) = I ,  2,3,  ..., 7. Note that 

Ra,, = 2.338. 

Ray 

FIGURE 2. (a)  A T & ( ~ T - & M ) ] ~  and ( b )  XTM as functions of RaT for Ra, 2 Ra,, = 2.338. 

The amplitude equation (3.6) for the longitudinal mode may be reduced to 
canonical form by the transformation 

(3.13) 
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whereupon AL satisfies 

(3.14) 

with 

(3.15) 

Very little seems to be known about solutions of (3.14) except for some results (for 
different boundary conditions) given in I and details of the solutions of the linearised 
equation given by Ross (1966). Numerical solutions may be found, a t  least in 
principle, by the methods adopted for solving (3.10), (3.11). For XL+ co the solution 
which decays to zero has the asymptotic behaviour 

(3.16) 

where P1, P2 are arbitrary constants and rj = 99, (Ross 1966). We have derived a 
more comprehensive expansion, details of which will not be given here but are 
available from the author. Solutions of (3.14) may then be found by integrating 
inwards from a suitably large value of X,, and the parameters ,!I1, PZ varied until, 
for a given value of Ra,, AL = dA,/dX, = 0 at X, = 0. This procedure is even more 
difficult to use than for the second-order problem because of the presence of solutions 
that grow exponentially as X, - RaL+ - co . A better method is to integrate inwards 
from a large value of X, and outwards from X, = 0 and match in between, but even 
this method is fraught with difficulties for Ra, even moderately large. Satisfactory 
results were obtained for Ra, less than about 10. 

More extensive results have been obtained by the second method referred to above, 
and good agreement between the two sets of results was obtained for Ra, 6 10. Sample 
curves of AL against X ,  are plotted in figure 3, and are seen to  be similar to those 
for the transverse mode except for the double zero a t  X, = 0 and the weak oscillatory 
tail as X,+ 00. Values of the maximum amplitude A,, and its location X,,, are 
plotted as functions of RaL in figure 4. 

As for the transverse mode, there is a minimum value Ra,, of Ra, for which 
solutions exist, and again i t  is associated with the first zero of the linearized solution. 

AL P1 x3 exp { - d/k> cos ( 4 7  + Pz), 

(3.17) We find that 
Ra,, = 3.094, 

and it follows that the minimum value of Ra for longitudinal rolls to exist is 

Ra = Ra, = Yn4(l +3.094(-a!$'(O))ki+ ...). (3.18) 

The increment of the critical Rayleigh number above that for the onset of convection 
in an unbounded unmodulated layer is O(&),  and contrasts with an increment O(&) 
for the transverse mode. The implications of this result for the preferred mode 
will be discussed in $5 .  

It appears from figure 4 that  XLM + 0, A,, + (i I Ra,, - X,, I ); as Ra, + 00. An 
asymptotic analysis similar to that given by Miles for (3.10) may be undertaken in 
this limit, and details are given in the appendix. The main result is 

XLM - RaEiln Ra, (Ra,+ a), 

which confirms that the point of maximum amplitude moves closer to the wall, but 
it does so even slower than €or the transverse mode. 
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3r 

XL 

FIQURE 3. A, as a function of X, for values of Ra, as follows: (a )  3.745; (b) 5.368; (c) 7.254; 
( d )  9.167; ( e )  11.103; d f )  13.054; (9 )  15.014; (h) 16.980; corresponding to AL(0) = 1,2,3,  ..., 8. 
Note that Ra,, = 3.094. 

R U L  

FIQURE 4. (a)  AL,[i(RaL-XLM)]+ and (b) X,, as functions for R ,  for Ra, 2 Ra,, = 3.094. 

4. The ‘imperfect ’ problem 
The solution for the perturbed variables given in Q 3 satisfies the conditions of no-slip 

and zero heat transfer at the endwalls (at least to leading order in e ) .  The steady base 
flow does not, however, satisfy these conditions, and this discrepancy results in a weak 
forcing of the perturbed solution at  the endwalls. In this section we investigate the 
effect of this weak forcing on the onset of convection. 

The situation now presented is similar to that discussed by Hall & Walton (1977). 
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They considered the onset of convection in a rectangular two-dimensional box heated 
uniformly from below when the endwalls were not quite perfect insulators, resulting 
in a weak forcing of the cellular mode. For values of the Rayleigh numbers which 
were not too large the forcing manifested itself as a weak disturbance concentrated 
near the endwalls, but as the Rayleigh number increased towards critical the 
disturbance penetrated into the interior of the box and its amplitude increased 
dramatically, though smoothly, and approached that given by conventional weakly 
nonlinear theory. The most interesting features cf the solution are that a flow exists 
for values of the Rayleigh number below the critical value for the onset of convection 
in the corresponding 'perfect' problem and the onset of the convective instability 
is quite smooth - there is no longer a bifurcation at a critical Rayleigh number. We 
expect a similar description to apply to the present problem, though the details of 
the calculation are different. 

The method of solution is similar to that for the unmodulated problem. We look 
for a solution for the perturbed variables which satisfies the boundary conditions 
( 2 . 1 0 ~ )  at  z = 0 , l  by expanding in Fourier series. A t  the same time we observe that 
the forcing at the endwalls in (2 .10M) is independent of y, and this suggests that 
we seek forced solutions independent of y. Let us write 

u,(x) cos nnz i-) = j l A n ( X i )  ( O ) +higher-order terms, (4.1) 
w,(x) sin nnz 
0,(x) sinnnz 

where An(Xl) is the slowly varying amplitude of the nth Fourier mode; both A,(X, )  
and X, will be related to E in due course. Solutions in this form are valid only close 
to the endwalls where F ( X )  may be expanded about X = 0 or X = 1 as appropriate, 
and we shall see that in contrast to the uniformly heated problem, the solution 
remains confined to the neighbourhood of the endwalls even for Ra just exceeding 
critical. The solutions near the two endwalls may then be treated entirely separately. 
The functions u,(x), wn(x),  0,(x) in (4.1) satisfy the usual linearized equations for 
Rayleigh-BBnard convection. 

We also need to expand the boundary conditions (2.10M) in Fourier series on [0,1], 
and this requires the Fourier decomposition of 1-2 and dG/dz, defined in (2.7). We 
write 

dG * m 
1-z= g,sinnnz, -= h,cosnnz, 

n-1 dz n-1 

where, in particular, g1 = 2/n, h, = 2/n4; the higher coefficients are not needed 
explicitly in the subsequent analysis. The boundary conditions on the nth Fourier 
mode are then 

A,(O)--- don = - d " ( O )  g,, An(0) W, = 0, An(0) U ,  = -ERuF'(O) h, (4.3) dx 

at X = x = 0. Similar conditions apply at the colder end of the container at X = 1. 
Provided that Ra is not too large (in a sense to be defined more precisely later) 

the forcing generates a disturbance which is concentrated in regions of thickness O ( E )  
on the X-scale at the endwalls. In this regime the slow variation may be neglected 
altogether to a first approximation, and we set A n ( X , )  z An(0) ,  for the solution near 
x = 0. 
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For that solution we follow Hall & Walton and write 
3 co 

6, = C anjexp{ik,,x}, 

u, = in I: b,,k;Ejl exp {iknjx}, 

w, = I: b,,exp(ik,,x), 
j-1 j=1 

3 

j-1 

where b,, = -knian3 (k2,.+n2n2)-2, and k,,,j = 1, 2, 3, are the three roots of 

(k2, + n2n2)3 k i  Ra (4.5) 

with positive real part. The unknown coefficients ani,j = 1 ,  2, 3, are determined by 
the boundary conditions (4.3). No details of the calculation will be given here, but 
it is clear that the amplitude of the disturbance is O(eRaF(0)) and that for Ra < Rap 
all Fourier modes decay exponentially as x + 00. Near the colder wall RaF( 1 ) replaces 
Ra in the corresponding calculations, and this means that, since F( 1 )  < 1 ,  the solution 
there decays more rapidly than it does near the hotter wall. Even when Ra 
approaches Ra?, RaF(1) is still well below critical, and this description of the flow 
near the colder wall is adequate for all values of Ra considered here. 

As Ra increases towards Ra? the description of the flow near X = 0 must be 
modified. When Ra = Ra? two solutions of (4.5) with n = 1 merge and become real; 
the solution then fails to decay with x, the disturbance is not so closely confined to 
the immediate neighbourhood of the endwall, and we can no longer neglect the 
variation in the local Rayleigh number with X .  It is clear that we need to examine 
the solution near Ra = Ra? more closely. The scalings adopted in $3 for the 
transverse mode suggest that we should examine the parameter regime 

I Ra = Ra? + 8( - 2015 F'(0)): RUT, 

I 
00 

and that we look for solutions in the form 

6 = A,(XT)sinnzeikc5+Be-2"Zsinnz+c.c.+ I: A,(X,)O,(x)sinnnz, (4.7) 

where B is an arbitrary constant corresponding to a13 above. The slowly modulated 
amplitude A ,  then satisfies 

12-2 

corresponding to (3.3). All the terms in (4.7) decay exponentially as x+00 except 
the first, to which we now restrict our attention. The boundary conditions for A, may 
now be obtained in the same way as in Daniels (1977) for the unmodulated problem. 
They take the form 

A ,  = #(O) Ceir ( X T  = 0), A,+O (&+a), (4.9) 

where C, y are constants depending on gl, h,. The details of the forms of G, y are of 
no particular interest and are omitted for the sale of brevity. Since the coefficients 
in (4.8) are real and A,  vanishes as X,+ 00, the phase of A ,  is independent of X T .  
(In contrast with the unmodulated case, when the forcing has different phase at  each 
end of the box.) We may therefore look for solutions with A ,  replaced by \Al l  in (4.8) 
subject to the boundary conditions 

lAl\ = CsF'(0) (XT = o), (A,I+O ( X T j  00) -  (4.10) 
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This suggests that  we look for solutions of (4.8) in which [All  - E ,  in which case 
the nonlinear term may be neglected. The appropriate solution is 

Ai (X, - RUT) I A,  I = CeF'(0) 
Ai( - Ra,) ' (4.11) 

where Ai(X) is an Airy function. This solution remains valid provided that Ai( - Ra,) 
is not close to  zero. It becomes zero when Ra, = Ra,, = 2.338 which is the critical 
value of RaT for the onset of the transverse mode in the absence of forcing at the 
endwalls. The nature of the singularity may be investigated by writing 

RUT = RaTc+p, /h 4 1 .  (4.12) 

It follows from (4.11) that  JA , J  - ep-l as p-0. The singularity in [All  may be 
removed by retaining the nonlinear terms in (4.8). When lAll - ~ p - l  the nonlinear 
term comes into play when E ~ , U - ~ E - $  - p,  i.e. p - d and the amplitude is then O ( E ~ ) .  
The solution in this regime may be obtained as follows. Let us write 

Then we have 
(4.13) 

(4.14) 

The appropriate solution is (cf. Miles 1978) 

I& 1 = aAi(XT - RUT) + 0 1 3 & ~ B ( X ~ - f h ~ ~ )  f . . . , (4.15) 

where B(XT-RaTc)  depends upon integrals of the fourth power of Airy functions. 
The boundary conditions a t  X, = 0 is satisfied by choosing a such that 

- ~ A i ' ( - R a , ~ ) ~ + + ~ B ( - ~ a , c )  = CF'(0). (4.16) 

Note that retention of the term in a3 means that a remains finite as ,ii-0. To 
leading order in E the maximum value xlM of the amplitude occurs where X T  = 
RAT+a,, where a, is determined by Ai'(a,) = 0, and xlM= 0.5357a, with a 
given by (4.16). A schematic graph of xlM as a function of ,ii is shown in figure 5.  
Note that a - j3-l as p+-oo, which means that A ,  - &(Ra,-Ra,c)-l as RaT+ 
Ra,,+ as is required to match with the solution given by (4.11). As ,ii+ + 00 we 
find that a2-,ii, which means that A ,  - ei(RaT-RaTc)i. The forcing by the 
boundary may be disregarded in this limit, and A,  matches onto a solution of the 
unforced problem given by (3.8), (3.10). The detailed matching of the solutions (4.11), 

straightforward and no details will be given here. 
The development of the forced flow as Ra increases may be summarized as follows. 

For Ra 4 Ra? the disturbance is weak, O ( E ) ,  and confined to narrow regions of 
thickness E a t  the endwalls. Many horizontal and vertical scales are present, and no 
structure is discernible except that the amplitude is greatest a t  the wall X = 0. When 
Ra = Ra," + dRa, with Ra, 4 Ra,, the solution near X = 0 is dominated by the first 
Fourier mode whose horizontal wavelength is equal to  that for unmodulated 
unbounded Benard convection. Its amplitude is still O ( E ) ,  but i t  is now modulated 
on a horizontal lengthscale O ( d X )  or O ( E ~ X )  and takes the form of an Airy function. 
In  this regime the point of maximum amplitude has moved away from the wall and 
corresponds to the first turning point of Ai(X,). As Ra, increases through O( 1 )  values 
the amplitude increases smoothly through O(&) at Ra, = RaTc to O(&), changing 
shape smoothly from an Airy function to the second Painleve transcendent as i t  does 

for RUT < Ra,,, (4.15) for RUT-RaTc - &$ and that for RUT-RU,, N 1 iS 

so. 
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0 

T P 
FIQURE 5. The maximum amplitude asafunction ofp in the parameter regime Ru, = Ra,,+dp. 
Here AIM(0) = 0.5357 [CF’(O)/B( -RaT,)j and the dashed curve is the asymptote A,, = 
0.5357 [Ai’( -RuT,)/B( - h T c ) ] ‘ , d .  

5. Discussion 
We have shown that if the forcing a t  the end walls due to the incompatibility of 

the base flow with the endwall conditions is neglected, then the transverse mode 
becomes unstable when 

R a  = ?$n4(l +ei2.338(-2a;F’(O))f+ ...), 

and the longitudinal mode becomes unstable when 

Ra = !$7r4(l +$3.094( -a$F’(O))i+ ...). 

We anticipate (though we have not proved) that the critical Rayleigh numbers for 
oblique modes (in which neither k, or k, is zero) lie between these values. On this 
basis the mode which appears first as Ra is increased for e < 1 is the longitudinal 
mode. These results hold whenever the horizontal boundaries are stress-free or rigid 
except that  in the latter case 77r4 is replaced by 1707.78 and a, takes a value different 
to that given in (3.6). 

The situation is more complicated when the true boundary conditions are taken 
into account, for, as we have shown in $4, a weak transverse mode is generated near 
the endwall X = 0 even when Ra is below critical. I ts  amplitude increases smoothly 
with R a  but is still small ( O ( E ) )  when the longitudinal model (for which the boundary 
conditions are ‘perfect ’) becomes unstable and becomes the dominant mode. The 
behaviour of the solution after the onset of the longitudinal mode is beyond the scope 
of the present work. It may simply grow in amplitude and penetrate further into the 
interior of the container or i t  may undergo one or more further bifurcations. A true 
three-dimensional disturbance in the form, for example, of hexagons must not be 
ruled out either. 

The only experimental results known to us concerning convection in a rectangular 
container are those undertaken by Srulijes (1979). (Rossby (1965) and Koschmieder 
(1966) used cylindrical containers in their experiments.) Qualitative comparisons with 
the present work is difficult because the experimental situation differs in many ways 
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from our simple theoretical model. For example, the horizontal surfaces are not 
stress-free, nor are the sidewalls perfect insulators, and the finite extent of the 
apparatus in the y-direction may have important consequences on the onset of the 
instability. Nevertheless, a qualitative comparison between theory and experiment 
is quite revealing. Srulijes has observed an instability in the form of longitudinal rolls 
for IEF’ (O) I  2 0.2 and Ra > Ra?, but he has also noted an instability in the form of 
either longitudinal rolls or one transverse roll for smaller values of I E F ’ ( O )  I and for 
subcritical values of Ra. Further, the onset of these modes occurs at smaller values 
of Ra as 1 E F I ( O )  I increases. 

The appearance of the longitudinal mode for Ra > Ra, is clearly consistent with 
our predictions that this is the most-unstable mode, and the appearance of the 
subcritical transverse mode is predicted by our analysis of $5. The amplitude of that  
mode is O(cRaF’(O)), and if we require a threshold amplitude to be reached before 
this mode may be observed in an experiment we would expect the threshold value 
of Ra to decrease like e-l, and this too is consistent with Srulijes observations. What 
the theory cannot predict is the appearance of subcritical longitudinal rolls, and we 
suggest that  this may be due to the finite extent of the apparatus in the y-direction, 
a factor which has been ignored in the present calculations. It is not possible to make 
an accurate comparison of our predictions of the critical value of Ra for the onset 
of the longitudinal mode because Srulijes does not give any information about a 
transition to such a mode for sufficiently small values of I E F ’ ( O )  I. 

He does, however, give results for Ra/Ra,(e) for three values of IsF’(0)l in the range 
0.2 to 0.4 for the case E = 0.1, where Ra,(e) is the critical value of the Rayleigh number 
when F’(0) = 0. These values are some 10% below the corresponding theoretical 
values ; but this may again be due to the finite extent of the apparatus in the y-direction, 
especially as this dimension was only four times the depth of the fluid layer. This 
difficulty is not present in the circular geometry used in Rossby’s (1965) and 
Koschmieder’s (1966) experiments, and a more accurate test of the theory may then 
be possible. We hope to return to this in a future paper. 

We have assumed throughout that IF’(0)l is 0 ( 1 ) ,  in which case the cold end of the 
container is a t  infinity on the lengthscale of the modulation of the amplitude. If 
IF’(O)I 4 1, however, i t  is possible that this lengthscale could be as long as the 
horizontal dimension of the container, and the boundary condition a t  X = 1 then 
needs to be taken into account. For transverse rolls this requires F’(0) - c2, and for 
longitudinal rolls P’(0) - e4. The case of transverse rolls has been discussed by Daniels 
(1982), but the solution for longitudinal rolls, which may be more important, remains 
to  be found. 

Appendix. Asymptotic behaviour of A g  - (Ra, - X,) A ,  + 2AL = 0 as Ra, --f co 
We wish to solve this equation subject to the boundary conditions 

A ,  = A; = 0 (X, = O ) ,  A,,A;+O (X,+CQ), 

where ’ denotes d/dX,. 
Numerical solutions suggest that, as RaL+ 00, the position X,, of maximum 

amplitude decreases, and the maximum amplitude A,, - [$(RAL - X,,)]+. Following 
Miles’ (1980) investigation of a similar second-order equation, we examine the 
solution in a narrow region near X, = 0 by writing 

x,=&, 1. 
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&f-- d4AL (RaL-&8) AL+2A3, = 0. 
dB4 

Then we have 

If we choose 6 such that 6-4 = 2RaL and rescale AL by writing A, = ?j6-%xL, we 
obtain 

-- - (+-68)xL-?j&. 

A ,  = ALo+6XL1+ .... 

d4xL 
de4 

Solutions of this equation are now sought by expanding in powers of 6: 
- 

Leading terms then give 
d4xL, 
do4 
-- - +(A,, - Z O ) ,  

and terms 0(6) give - 
d4AL1 - 1x -- 

L1 - $&, XLl - exLo. d84 

Miles (1980) has shown that the corresponding equations for the second order 
problem have simple closed-form solutions. We have not been able to find such 
solutions here and if xLo, xLl need to be known for all 8, these equations need to be 
solved numerically. However, we can obtain some important and interesting results 
without _ -  detailed solutions, merely by examining the asymptotic expansions of 
A,, AL1. 

Let us suppose that A, = A,, when 8 = 8, $- 1 .  For 8 $- 1 we find that 

xLo N 1+a,eV'iscos(d/B8+b,), 

AL1 - -8, 
where a,, b, are unknown constants. 

Since AL = A,, a t  8 = dl it  follows that xL = 0 a t  8 = 8,, and hence 

-aledisl cos (die, + b, +in) -6 = 0. 

These terms are of the same order of magnitude if 

Hence 

Also 

as anticipated by the numerical computations. 
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